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Abstract: One of the key indicators of traffic control quality in urban traffic control (UTC)
systems is the queue length. Even in unsaturated conditions, longer queues indicate longer
travel delays and higher fuel consumption. With the exception of some expensive surveillance
equipment, the queue length itself cannot be measured directly. Many methods that estimate
the queue length from detector measurements are used in engineering practice, ranging from
simple to elaborate ones. The proposed method is based on Gaussian process (GP) model of the
occupancy-queue relationship. It can handle data uncertainties and provides more information
about the quality of the queue length prediction.
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1. INTRODUCTION

Queue length has been regarded as one of the key pa-
rameters in the process of signal plan design, as estimates
of queue length may be used as a part of a criterion
that is minimised by urban traffic control (UTC) systems
that provide coordinated control of signalised intersec-
tions. Numerous studies discuss the problem of queue
development (Friedrich et al., 2003; Mystkowski and Khan,
1998; Viloria et al., 2000; van Zuylen and Viti, 2006).
Typical queueing models are for example those of Akcelik
(1980), Transportation Research Board (2000), Hensher
and Button (2000), or Mück (2002). These models are
derived from underlying physical principles of the queue
formation and dissipation processes and include some ad-
hoc corrections accounting for the stochastic nature of the
queuing process.

Stochastic properties of queue development are directly
taken into account by Markov chain models (van Zuylen
and Viti, 2003, 2006). This class of models describes
queueing as a stochastic process with probabilities of queue
change being given by probability distributions.

The third class of models found in literature are black-box
models trying to predict the queue length based on known
“training” data. These include autoregressive models (Ho
and Hwang, 1994), neural networks (Chang and Su, 1995;
Ledoux, 1997), combination of neural networks and fuzzy
logic (Quek et al., 2006), or neural network constructed
with the help of genetic algorithms (Vlahogianni et al.,
2005).

All the models mentioned above compute queue length
from vehicle count provided by upstream detectors. With
the exception of Diakaki (1999) and recent publications of
Papageorgiou and Vigos (2008) and Vigos et al. (2008)

(which concentrate on estimating the total number of
vehicles), detector time-occupancy is not used to provide
additional information about the queue formation process,
although this quantity is usually provided together with
the vehicle count by an intersection controller.

The reason for disregarding time-occupancy information
can be twofold: First, pure time-occupancy gives us a
reasonable measure of queue length only for limited range
of queue tails. If the distance from the detector to the
downstream queue tail is high, the time-occupancy stays
low regardless of the queue length. If the queue tail reaches
upstream far behind the detector, the time-occupancy
will be high regardless of the queue length. Second, the
readings from the detector are strongly influenced by other
parameters of the traffic flow, as inter-vehicle gaps, vehicle
speeds, and their length.

Recently, several papers appeared that try to make use of
the time-occupancy measurements for providing additional
information about the traffic state at an approach to a
signalised intersection. Chang et al. (2000) combine vehi-
cle count and time-occupancy measurements with known
signal state and a model of vehicle dynamics to estimate
the queue length. Another approach has been taken by
Papageorgiou and Vigos (2008) who start with thorough
theoretical analysis of the time-occupancy measurements
and follow with a Kalman filter implementation of vehicle
count estimator (Vigos et al., 2008).

In this paper we present an empirical approach to queue
length estimation from time-occupancy data, that is meant
as augmentation of the existing methods and that is able
to provide estimation of queue length in the vicinity of a
loop detector based on sparse occupancy measurements.

The paper is further organised as follows: in Section 2
we will briefly discuss the practical observations that
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led to the method proposed in this article. Section 3
contains a short introduction to Gaussian process (GP)
models that will be used as a base of the queue length
estimation method. This Section also lists the parameters
of the GP model used in the paper. Results of the queue
length estimation using the model and their discussion are
presented in Section 4.

2. MOTIVATION

In the last few years the research group at UTIA developed
first approximation of a state-space queue length model
for urban arteries based on ideas of Homolová and Nagy
(2005). This model is based on vehicle conservation law
and non-linear Kalman filtering, and uses solely informa-
tion from strategic upstream detectors.

When adopting this model to a smaller network equipped
also with dilemma-zone detectors, the measurements pro-
vided by these detectors will be ignored by the model,
although they could reasonably improve the queue length
estimate. Hence, we would like to find a mechanism for a
dilemma-zone detector to provide additional information
about the queue tail development, and to identify situa-
tions where the detector will not contribute to a reasonable
estimate due to saturation. In order to suppress the zero
speed-zero occupancy phenomenon observed by Papageor-
giou and Vigos (2008), we suppose that the sizes of the
detector loops exceed the typical maximum gap between
vehicles.

We have several limiting factors, though:

∙ the placement of the detectors in the network is fixed,
∙ additional detectors are not an option,
∙ due to equipment limitations we have relatively sparse

measurements with period of 90 seconds.

Given the nature of time-occupancy measurements, the
position of the queue tail will have different influence on
detectors placed in different distances from the stop-bar.
It is clear that the further is the detector installed from
the stop-bar, the less occupancy changes caused by short
queues on occupancy can be measured. On the other hand,
if the queue tail reaches behind the detector, the queue
length cannot be measured anymore. As we can see from
a simulated occupancy-queue length graph in Figure 1, the
position of the detector alone causes vertical shifts in the
graphs. We will therefore identify the model for a fixed
detector distance from the stop-bar.

However, as we can also see in Figure 1, if we take into
account variable lengths of the green signal as a result of
vehicle actuated control mechanisms, the resulting mea-
surements become quite noisy as the maximum queue
length is definitely influenced by the length of the down-
stream green signal, and the readings of the detector are
influence by the amount of free flow of vehicles during the
green phase.

We are therefore also logging the changes in signal group
states at the intersection controller and we would like to
build a model that makes use of green length and occu-
pancy measurements to estimate the number of queueing
vehicles.
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Fig. 1. Occupancy-queue length graph for different de-
tector distances from the stop-bar. Note the strong
noise in the observed data that is due to changes
in the length of green signal. Simulated in Aimsun
(Transport Simulation Systems, 2008).

Our queue model is inspired by Diakaki (1999) and it
is based on the experiments with existing queue length
estimation model of Homolová and Nagy (2005). This
model does not behave well for high-occupancy situations
and provides a point estimate only. While it uses a linear
dynamic first-order formula for queue-occupancy relation-
ship, our initial experiments indicated that the additional
information provided by the dynamic part of the model
does not bring significant improvements to the results ob-
tained and the model can be expressed as static. We could
use other models that already exist, but we would like to
have interval estimates of queue length rather than point
estimates. This is the reason why we chose the Gaussian
process model.

3. GAUSSIAN PROCESS MODELS

The Gaussian process model is an example of the use
of a flexible, probabilistic, non-parametric model with
uncertainty predictions. It fits naturally in the Bayesian
modelling framework in which instead of parameterising
mapping function f(x), a prior is placed directly on the
space of possible functions f(x) which could represent the
nonlinear mapping from input vector x to output y. Its use
and properties for modelling are reviewed in Rasmussen
and Williams (2006). In our particular case the input
vector x will be composed of time-occupancy and green
length and the output y will correspond to the estimated
queue length.

A Gaussian process is a generalisation of the Gaussian
probability distribution. It can be viewed as a collec-
tion of random variables f(xi) with joint multivariate
Gaussian distribution: f(x1), . . . , f(xn) ≈ N (0,ΣΣΣ), where
N (⋅, ⋅) stands for Gaussian distribution determined with
mean value and variance, where covariance matrix element
Σpq = Cov(yp, yq) = C(xp,xq) gives the covariance be-
tween values of the functions yp = f(xp) and yq = f(xp).
Thus, the mean �(x) (usually assumed to be zero) and the
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covariance function C(xp,xq) fully specify the Gaussian
process. Note that the covariance function C(⋅, ⋅) can be
any function having the property of generating a positive
definite covariance matrix.

A common choice is

C(xp,xq) = v1 exp

[

−
1

2

D
∑

d=1

wd(x
d
p − xd

q)
2

]

+ �pqv0, (1)

where ΘΘΘ = [w1, . . . , wD, v1, v0]
T are the ‘hyperparameters’

of the covariance functions, v0 is estimated noise variance,
v1 is the estimate of the vertical scale of variation, D is
the input dimension, xd

p and xd
q are dth components of

input vectors xp,xq and �pq = 1 if p = q and 0 otherwise.
The covariance function (1) is composed of two parts: the
Gaussian covariance function for the modelling of system
function and the covariance function for the modelling of
noise. The noise, in our case, is presumed to be white.
Other forms of covariance functions suitable for different
applications can be found in Rasmussen and Williams
(2006).

For a given problem, the parameters in ΘΘΘ are learned
(identified) using the data at hand. After the learning, one
can use the w parameters as indicators of ‘how important’
the corresponding input components (dimensions) are:
if wd is zero or near zero it means that the inputs in
dimension d contain little information and could possibly
be removed.

Consider a set of N D-dimensional input vectors X =
[x1,x2, . . . ,xN ] and a vector of output data
y = [y1, y2, . . . , yN ]T . Based on the data (X,y), and given
a new input vector x∗, we wish to find the predictive
distribution of the corresponding output y∗. Unlike other
models, there is no model parameter determination as
such, within a fixed model structure. With this model,
most of the effort consists in tuning the parameters of the
covariance function. This is done by maximisation of the
log-likelihood

ℒ(ΘΘΘ) = log(p(y∣X))

= −
1

2
log(∣ K ∣)−

1

2
yTK−1y −

N

2
log(2�) (2)

where ΘΘΘ is the vector of hyperparameters and K is the
N ×N training covariance matrix. The calculation of the
log-likelihood and its derivatives due to the optimisation
algorithm involves the computation of the inverse of the
N ×N covariance matrix K at every iteration, which can
become computationally demanding for large N . Never-
theless, the number of parameters to be optimised is small
(D+ 2, see Equation (1)), which means that optimisation
convergence might be faster and that the ‘curse of dimen-
sionality’ so common to black-box identification methods
is circumvented or at least decreased.

The described approach can be easily utilised for regression
calculation. Based on training set X a covariance matrix
K of size N ×N is determined. As already mentioned, the
aim is to find the distribution of the corresponding output
y∗ at some new input vector x∗ = [x1(N + 1), x2(N +
1), . . . , xD(N + 1)]T .

For a new test input x∗, the predictive distribution of the
corresponding output y∗, over cases in the training set
(X,y) is y∗∣(X,y),x∗ and is Gaussian, with mean and

variance
�(x∗) = k(x∗)T K−1 y, (3)

�2(x∗) = �(x∗) − k(x∗)T K−1 k(x∗),

where k(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is the N × 1
vector of covariances between the test and training cases,
and �(x∗) = C(x∗,x∗) is the covariance between the
test input and itself. Vector k(x∗)T K−1 in (3) can be
interpreted as a vector of smoothing terms which weights
the training outputs from y to make a prediction at the
test point x∗.

In our particular case xi = [Oi, zi], where Oi is the
occupancy and zi = gi/Tc is the relative green length
computed as a ratio of the real green length gi and the
cycle length Tc. The corresponding component of the
output vector y is the queue length measured for the given
Oi and zi.

The reasons to select modelling with Gaussian process
models are small amounts of data relative to the number
of selected regressors, data corrupted with noise and
measurement errors and the need for the measure of
model prediction confidence. If there is not enough data
or it is heavily corrupted with noise, even the Gaussian
process model cannot perform well, but in that case the
inadequacy of the model and the identification data is
indicated through higher variance of the predictions.

The utility to provide the information about the model
confidence made Gaussian process models attractive for
modelling case studies in various domains like: chemi-
cal engineering Kocijan and Likar (2007) and process
control Likar and Kocijan (2007), biomedical engineering
Faul et al. (2007), biological systems Ažman and Kocijan
(2007), environmental systems Grašič et al. (2006), power
systems Leith et al. (2004) and engineering Leithead et al.
(2005), motion recognition Wang et al. (2008), etc., to list
just a few. We believe that this utility makes it interesting
also for use in the domain of traffic modelling and its
applications.

We should note that there is no assumption that signals
measured in a traffic process will have Gaussian distribu-
tion. The Gaussian process prior is put over the space of
functions meaning that every prediction that is made by
GP model has Gaussian distribution. This implies that
every prediction that is made has some most likely value
and the less likely values are equally possible on both sides
of the most likely value. This is, by our convenience, not
unrealistic.

4. RESULTS

As it is not possible for us to conduct deliberate exper-
iments in real-world traffic, in order to demonstrate the
behaviour of the proposed GP model, one day of traffic
was simulated on a simple network (see Figure 2) using
the Aimsun micro-simulator (Transport Simulation Sys-
tems, 2008) that, once calibrated, should be able to closely
mimic the real traffic (Fang and Elefteriadou, 2005). The
results shown in this section were obtained using data from
detector placed at distance of 20 metres (approximately 5-
6 vehicles) from the stop-bar. This distance was selected as
an average distance of dilemma-zone detectors at our test
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Fig. 2. Test network model. The detector DVA is used for
measurements.

site. The traffic demand data used the simulation were
real-world measurements from our test site at Prague-
Zličín. In order to mimic the behaviour of the vehicle
actuated traffic signal control, the duration of the green
signal varied from 16 to 55 seconds in a 90 second cycle.
Every 90 seconds of the simulation the maximum queue
length, the relative green length, and detector measure-
ments were stored, resulting in 960 samples of data con-
sisting of green length, occupancy, and maximum queue
length. This approach corresponds to the common traffic
engineering practice in Prague where measurements are
collected every 90 seconds.

The 960 simulated measurements were then divided into
two groups of 254 training and 706 validation data samples
using stratified sampling of a 2D histogram of queue
lengths versus measured occupancy. The size of a queue
length bin was 2 vehicles, the size of an occupancy bin
was 4%. As the process of GP identification (2) requires a
repetitive inverse of the training covariance matrix, the
number of 254 training samples was selected by hand
as a limit providing the tuned covariance function in an
acceptable time on our hardware.

When we first identified a GP model for the whole training
data set, the high variance of the measurements in the high
occupancy region dominated the whole prediction. Situa-
tion like this may happen due to selection of the covariance
function in the GP identification process (Rasmussen and
Williams, 2006). To obtain lower variance of queue length
estimation in the low occupancy region, we opted for a
hybrid model, dividing the modelled occupancy into two
regions with different operating regimes. The position of
the split is data dependent and is given by the abrupt
change in variance observed in the measurement data and
in our case can be taken at O = 50%. The resulting
composite model is shown in Figure 3. In all figures, the
relative green length component of the model has been
omitted for clarity reasons.

Figure 4 shows the performance of the model for its own
training data in low variance region, Figure 5 contains
queue estimation for the same region using the validation
data set. Looking at the confidence interval for queue
length we can observe that if the maximum queue length
estimates are close to zero, the confidence interval pre-
dicted by the GP model may contain negative values. This
is the nature of the estimation process as GP models can
not use truncated Gaussian distributions and in such a
case the confidence interval lower bound can be clamped
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Fig. 3. Two components of the model merged together on
validation data. Stars denote the correct data, circles
denote the predicted mean value, and red/gray dots
limit the 95% confidence interval.
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Fig. 4. Validation on training data of the low noise com-
ponent of the model. Stars denote the correct data,
circles denote the predicted mean value, and red/gray
dots limit the 95% confidence interval.

at zero. This clamping corresponds in fact to adding a
prior knowledge "queue length can not be negative" to
the model.

The behaviour of the model in the high variance region is
shown in Figure 6 for the training data and in Figure 7 for
the validation data set. We can see that in this case the
observed variance in the training data (due to detector
saturation and uncertainty in measurements, where cer-
tain occupancy value may correspond to different queue
lengths) results also in predictions with high variance. This
is the correct result as the quality of measured data does
not permit better queue length prediction.
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Fig. 5. Validation on validation data of the low noise
component of the model. Stars denote the correct
data, circles denote the predicted mean value, and
red/gray dots limit the 95% confidence interval.
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Fig. 6. Validation on training data of the high noise
component of the model. Stars denote the correct
data, circles denote the predicted mean value, and
red/gray dots limit the 95% confidence interval.

5. CONCLUSIONS

We have presented an empirical static model for determin-
ing queue length from sparse occupancy data and green
signal length measurements, based on Gaussian process
framework. Due to the nature of the underlying identifi-
cation algorithm of the Gaussian process, the presented
version of the model is hybrid, consisting of two different
models for low-saturation and high-saturation conditions.
The presented model is based on simulated data as we
do not have access to equipment that would allow us to
measure the queue directly.

Experimental results confirm that occupancy measure-
ments may provide reasonable queue length estimates for
unsaturated conditions on the detector and that the GP-
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Fig. 7. Validation on validation data of the high noise
component of the model. Stars denote the correct
data, circles denote the predicted mean value, and
red/gray dots limit the 95% confidence interval.

based model can identify situations where the occupancy
measurements will not provide reasonable estimate due
to detector saturation. The effect of rising queue length
on standard deviation of its estimate is similar to the
observations of van Zuylen and Viti (2003) for an intensity-
based model. As our model is meant to augment existing
intensity-based estimator, we will in the latter case ignore
the information provided by the GP model, although we
may use the knowledge e.g. to set some lower bound for
our intensity-based queue length estimator.

The main advantage of using a GP model over different
modelling approaches is that it tells what is the confidence
of the model predictions, which is valuable additional
information – results provided by different models may
or may not verify well in practice, but the measure of
confidence in our model reflects the uncertainty of the
predictions due to, for example, lack of representative
data, or due to uncertainty in the original training data
set. Similar to Gaussian process models, methods based
on linear regression can also provide an estimate of uncer-
tainty (or confidence in prediction), but this uncertainty
would be a constant in entire modelled region. In our case
it is not, though it does not vary much.

Many possible extensions to this model can be developed:
The hybrid nature of the model with a split between the
high- and low-variance regions can be eliminated by using
a different formulation of the covariance function (1). Such
a model would then be able to adapt to inhomogeneous
variances in the input data. Unfortunately, development of
such an approach is not straightforward. Also, the model
is static, meaning that it does not make use of information
about traffic dynamics, as some of the intensity based
approaches do (Diakaki, 1999). If a higher sampling rate
could be achieved (for example, 5 or 10 seconds instead of
current 90 seconds) the dynamic behaviour of the queueing
process could be possibly captured by a dynamic model.
Such a model would provide better estimates and improve
the reliability of the estimates in the region of detector
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saturation. Finally, some of the ideas provided by Pa-
pageorgiou and Vigos (2008) may be used to combine
the sparse time-occupancy measurements with other in-
formation about the traffic on an approach to a signalised
intersection.
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